Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Reproduction, embryological development, and settlement of corals are critical for survival of coral reefs through larval propagation. Yet, for many species of corals, a basic understanding of the early life‐history stages is lacking. In this study, we report our observations forex situreproduction in the massive reef‐building coralPoritescf.P. lobataacross 2 years. Spawning occurred in April and May, on the first day after the full moon with at least 2 h of darkness between sunset and moonrise, on a rising tide. Only a small proportion of corals observed had mature gametes or spawned (14–35%). Eggs were 185–311 μm in diameter, spherical, homogenous, and provisioned with 95–155 algal cells (family Symbiodiniaceae). Males spawned before females, andex situfertilization rates were high for the first 2 h after egg release. Larvae were elliptical, ~300 μm long, and symbiotic. Just 2 days after fertilization, many larvae swam near the bottom of culture dishes and were competent to settle. Settlers began calcification 2 days after metamorphosis, and tentacles were developed 10 days after attachment. Our observations contrast with previous studies by suggesting an abbreviated pelagic larval period inPoritescf.P. lobata, which could lead to the isolation of some populations. The high thermal tolerance and broad geographic range ofPoritescf.P. lobatasuggest that this species could locally adapt to a wide range of environmental conditions, especially if larvae are locally retained. The results of this study can inform future work on reproduction, larval biology, dispersal, and recruitment inPoritescf.P. lobata, which could have an ecological advantage over less resilient coral species under future climate change.more » « less
-
ABSTRACT As ocean warming threatens reefs worldwide, identifying corals with adaptations to higher temperatures is critical for conservation. Genetically distinct but morphologically similar (i.e. cryptic) coral populations can be specialized to extreme habitats and thrive under stressful conditions. These corals often associate with locally beneficial microbiota (Symbiodiniaceae photobionts and bacteria), obscuring the main drivers of thermal tolerance. Here, we leverage a holobiont (massivePorites) with high fidelity for C15 photobionts to investigate adaptive variation across classic (“typical” conditions) and extreme reefs characterized by higher temperatures and light attenuation. We uncovered three cryptic lineages that exhibit limited micro‐morphological variation; one lineage dominated classic reefs (L1), one had more even distributions (L2), and a third was restricted to extreme reefs (L3). L1 and L2 were more closely related to populations ~4300 km away, suggesting that some lineages are widespread. All corals harboredCladocopiumC15 photobionts; L1 and L2 shared a photobiont pool that differed in composition between reef types, yet L3 mostly harbored unique photobiont strains not found in the other lineages. Assemblages of bacterial partners differed among reef types in lineage‐specific ways, suggesting that lineages employ distinct microbiome regulation strategies. Analysis of light‐harvesting capacity and thermal tolerance revealed adaptive variation underpinning survival in distinct habitats: L1 had the highest light absorption efficiency and lowest thermal tolerance, suggesting that it is a classic reef specialist. L3 had the lowest light absorption efficiency and the highest thermal tolerance, showing that it is an extreme reef specialist. L2 had intermediate light absorption efficiency and thermal tolerance, suggesting that is a generalist lineage. These findings reveal diverging holobiont strategies to cope with extreme conditions. Resolving coral lineages is key to understanding variation in thermal tolerance among coral populations, can strengthen our understanding of coral evolution and symbiosis, and support global conservation and restoration efforts.more » « lessFree, publicly-accessible full text available November 1, 2025
An official website of the United States government
